*Five Years Citation in Google scholar (2016 - 2020) is. 1451*   *    IJPR IS INDEXED IN ELSEVIER EMBASE & EBSCO *       

logo

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH

A Step Towards Excellence
Published by : Advanced Scientific Research
ISSN
0975-2366
Current Issue
No Data found.
Article In Press
No Data found.
ADOBE READER

(Require Adobe Acrobat Reader to open, If you don't have Adobe Acrobat Reader)

Index Page 1
Click here to Download
IJPR 9[3] July - September 2017 Special Issue

July - September 9[3] 2017

Click to download
 

Article Detail

Label
Label
Optimization and evaluation of topical gel containing solid lipid nanoparticles loaded with luliconazole and its anti-fungal activity

Author: VIJAY KUMAR, SHABNAM AIN, BABITA KUMAR , QURRATUL AIN, GAURAV
Abstract: New topical pharmaceutical options are critically needed to obviate fungal infections. Luliconazole is a potent antifungal drug for the treatment of fungal infection. Due to bioavailability barriers of luliconazole, the current study is associated to develop an optimized topical luliconazole solid lipid nanoparticles (SLN) gel formulation against tropical fungal infection with prolonged therapeutic potential. Luliconazole loaded SLN were prepared through the solvent diffusion method using stearic acid & poloxamer 188 and optimized as per their entrapment efficacy. Thereafter, the optimized SLN wes subjected to physicochemical evaluation, followed by the preparation of different gel formulation. The physicochemical parameters of the optimized gel formulation (G3) were evaluated. Further anti-fungal activity of the G3 was determined against the growth of Candida albicans by TLC-Bioautography assay. The results reveal that SLN F6 shows a significant entrapment with 92.13%±0.975 entrapment efficacy. In particle size, size distribution and zeta potential analysis, SLN exhibit a mean particle diameter of ~344.3 nm, PDI of 0.168, intercept value 0.98 and zeta potential ~18.8 mV. The G3 shows a higher entrapment with 91.39%±0.187 entrapment efficacy and in-vitro drug release profile of the G3 with 1.5 % carbopol 934 w/v shown a sustained release profile with 79.57%±0.213 desolvation rate even after 24 hrs. The anti-fungal activity of SLN G3 gel showed a strong zone of inhibition of the growth of C. albicans. Hence, the study concludes that luliconazole loaded SLN G3 gel formulation containing 1.5% w/v carbopol 934 is suitable for topical application and having strong anti-fungal activity.
Keyword: Solid lipid nanoparticles, Luliconazole, Tropical gel formulation, Anti-fungal activity
DOI: https://doi.org/10.31838/ijpr/2020.SP2.169
Download: Request For Article
 
Clients

Clients

Clients

Clients

Clients
ONLINE SUBMISSION
USER LOGIN
Username
Password
Login | Register
News & Events
SCImago Journal & Country Rank

Terms and Conditions
Disclaimer
Refund Policy
Instrucations for Subscribers
Privacy Policy

Copyrights Form

0.12
2018CiteScore
 
8th percentile
Powered by  Scopus
Google Scholar

hit counters free