*Five Years Citation in Google scholar (2016 - 2020) is. 1451*   *    IJPR IS INDEXED IN ELSEVIER EMBASE & EBSCO *       

logo

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH

A Step Towards Excellence
Published by : Advanced Scientific Research
ISSN
0975-2366
Current Issue
No Data found.
Article In Press
No Data found.
ADOBE READER

(Require Adobe Acrobat Reader to open, If you don't have Adobe Acrobat Reader)

Index Page 1
Click here to Download
IJPR 9[3] July - September 2017 Special Issue

July - September 9[3] 2017

Click to download
 

Article Detail

Label
Label
Multi-Machine Learning Binary Classification, Feature Selection and Comparison Technique for Predicting Death Events Related to Heart Disease

Author: RITU AGGRAWAL, SAURABH PAL
Abstract: The ‘cardiovascular disease’ (CVD) refers to any heart disease, vascular disease or venous disease. Deaths due to CVD: As pointed out by the World Health Organization, the annual death toll continues to exceed 17.9 million. Some ongoing machine learning research publications have shown the utility of feature selection algorithms in machine learning activities. This article reports the positive and exact results of these changes and argues for their true thinking in comparable learning activities. To achieve this goal, six models are proposed, all of which apply 8 machine learning classifiers (such as LR, DT, SVM, LDA, QDA, RF, KNN and NB) over models. With the estimation of accuracy, other indicators such as precision, recall rate, F1 score, support score, AUC/ROC have been calculated to support the model. The six selected models are 1.Model without dimensionality reduction (with all features), 2. Correlation coefficients score model, 3.Voting (hard + soft) classifier model, 4. Linear SVC + select from model, 5. Linear svc + RFECV model, 6. Tree based feature classifier (svc + ET) model. Among all these six model, the highest accuracy gain by linear discriminant Analysis (80.61%) in model 1, 83.17 % by Random Forest in model 2, 84.10 % accuracy by random forest again in model 4, 83.12% accuracy by linear discriminant analysis in model 5, 83.05 % accuracy by Logistic regression in model 6. By voting classifier (hard and soft = 76.66 %) accuracy gained. Finally, we compared the applicability of all these models to find deaths caused by heart disease.
Keyword: Machine Learning, Cardiovascular Disease, Classifiers, Model Accuracy, voting classifier.
DOI: https://doi.org/10.31838/ijpr/2021.13.01.080
Download: Request For Article
 
Clients

Clients

Clients

Clients

Clients
ONLINE SUBMISSION
USER LOGIN
Username
Password
Login | Register
News & Events
SCImago Journal & Country Rank

Terms and Conditions
Disclaimer
Refund Policy
Instrucations for Subscribers
Privacy Policy

Copyrights Form

0.12
2018CiteScore
 
8th percentile
Powered by  Scopus
Google Scholar

hit counters free